
Querying a Relational Database
So far we have seen how to design a relational database and now we turn

to mechanisms to interrogate a database

We wish to extract from the database a subset of the information that
answers some question. Here are some typical questions we might ask:

– What are the department names?
– Tell me all the data held about male employees.
– What are the names of the employees in the R&D department?p y p

The questions are called queries and consists of programs built out of:
(i) retrieving data as a subset of some relation(i) retrieving data as a subset of some relation

and (ii) combining two relations together in a meaningful way

W ill t ki d f l f d ibi iWe will see two kinds of language for describing queries
– procedural languages describe step-by-step what is to be done

declarative language only describe what is to be returned

337MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

– declarative language only describe what is to be returned

Procedural Languages

The procedural approach builds programs as sequences of sub-setting and
combining operations;

– The base tables in the database are relations
– Each of the operators returns a relation which is derived from the base tables (i.e. a view

not a copy)
– the result of one operator can be fed into another

The Relational Algebra is a formal (i.e. not one you can use in practice)
procedural language which is what the computer uses inside

R1 R2
R3 V1

op1
R3

R4
V1

V2
result

op2

338MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

result

Declarative Languages

The declarative approach describes the desired results and lets the DBMS
work out the best sequence of operations

The Relational Calculus (not covered) is a formal declarative language

SQL i l (i i) hi h i d l i d iSQL is a concrete language (i.e. you can use it) which is declarative and is
the standard language with which databases are communicated

– both by humans and by other programsy y p g

Choose particular columns

R1 R2
R3

result
from R2 and R3

andR3

R4
and

rows from R2 and R3 which

339MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

have related values.

The Relational Algebra
is a formal language for querying relations

an internal language, NOT a language for the user

h h b i i i d f D M i l i Lhas the basic operations required of any Data Manipulation Language

all DBMS should provide these capabilities

they can be used as the basis of a usable Data Manipulation Languagey p g g

they are used in query implementation and optimization
SQL is turned into these operations

relations can be manipulated in limited but useful waysrelations can be manipulated in limited but useful ways

many query languages also allow additional operations such as calculations,
summary and ordering

A query in the relational algebra is a series of assignments to variables which
hold views, e.g.:

Males ← σ sex = “M” (Employee)(p y)

Assignment
Table(s)

Used
Operation

View Name

340MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Symbol Operation

SUMMARY : Relational Algebra Operations

The principal relational operations are:
σ select* - pick rows from a relation by some condition

Key Slide

∏ project* - pick columns by name
join - connect two relations usually by a Foreign Key

The main set operations include:
∪ union* - make the table containing all the rows of two relationsg

∩ intersection - pick the rows which are common to two relations
─ difference* - pick the rows which are in one table but not another

X Cartesian product* - pair off each of the tuples in one relation with
those in another - creating a double sized row for each pair

All the other operations can be defined in terms of the five marked with a star

341MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

All of the operations return relations

Selection (or Restriction) σ Key Slide

Selection extracts the tuples of a relation which satisfy some condition
on the values of their rows and return these as a relation

Example: return all the employees who work in the city of Glasgow
i.e. get all of the records from the Employee table for which the city

l h ld h l “Gl ”column holds the value “Glasgow”
Locals ← σ city = "Glasgow” (Employee)

Locals is then the name of the query which could be used as a view in– Locals is then the name of the query which could be used as a view in
subsequent queries

The condition is similar to a Java boolean expression except that it uses
the words NOT, OR and AND instead of !, || and && and it contain:
─ Literals – i.e. constants ─ comparison operators (=, >, etc.)p p ()
─ column names ─ boolean operators (and, not, or)

342MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

YoungOrNear ← σ city = "Glasgow” OR (city = “Stirling” AND bDate > ‘1/1/80’) (Employee)

Projection ∏ Key Slide

Projection extracts some of the fields from a relation, by giving the names
of the fields

GenderSalary ← ∏ gender, salary (Employee)

In the result:
– No attribute may occur more than once
– Duplicate entries will be removed
– Thus if we want to retain the number of times each is used, we must ,

include the Primary Key

Projection and selection can be combined.j
– It is usually more appropriate to reduce the number of rows first before

reducing the columns
For instance to determine the names of employees working in Glasgow– For instance, to determine the names of employees working in Glasgow

Answer ← ∏ name (σ city = "Glasgow” (Employee))

This does a selection followed by a projection

343MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

This does a selection followed by a projection
– the inner operation is performed first

Union ∪
The union operator produces a relation which combines two relations by

containing all of the tuples from each - removing duplicates
– See examples on next slide

People ← Students ∪ Staff

The two relations must be "union compatible“
– i.e. have the same number of attributes drawn from the same domains (but maybe

having different names)having different names)

If attribute names differ, the names from the first one are taken

344MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Two Union Compatible Relations Key Slide

STUDENT ∪ STAFFSTUDENT STAFF
FN LN FN LN FN LN
Susan Yao
Ramesh Shah
Johnny Kohler

John Smith
Ricardo Browne
Susan Yao

Susan Yao
Ramesh Shah
Johnny KohlerJohnny Kohler

Barbara Jones
Amy Ford
Ji W

Susan Yao
Francis Johns
Ramesh Shah

Johnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang

STAFF - STUDENT

Jimmy Wang
Ernest Gilbert

Jimmy Wang
Ernest Gilbert
John Smith

STUDENT ∩ STAFF
STAFF - STUDENT Ricardo Browne

Francis Johns
FN LN

FN LN
John Smith

Susan Yao
Ramesh Shah

Ricardo Browne
Francis Johns

345MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Example
– We would like a list of names and emails of everyone living in Glasgow
– We can use union if we reduce the staff and student tables to a common set ofWe can use union if we reduce the staff and student tables to a common set of

columns

Staff (ni#, sname, city,…, phone, email, room)
Student (ni#, name, city, ……, email, course, year)

GStaff ←∏ sname, email (σ city = "Glasgow” (Staff))

GStud ←∏ name email (σ city = "Glasgow” (Student))GStud ←∏ name, email (σ city = Glasgow (Student))

GlasgowEmails ← GStudents ∪ GStaff

346MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Intersection ∩

This is similar to union but returns tuples that are in both relations
– Example – the female students living in Glasgow:p g g

FemalesInGlasgow ← σ city = "Glasgow” (Employee)

∩ σ gender = “F” (Employee)

• How else can this particular query be written?
• Why can it be rewritten?

347MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Difference -
Similar to union but returns tuples that are in the first relation but not the

second
E l l l l– Example non-local employees:

NonLocals ← Employee - Locals

Intersection and difference both require union compatibility

Both use column names from the first relationBoth use column names from the first relation

Only operations based on the same relation can be rewritten

348MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Cartesian Product X

E l Dependent

Every row from the first relation is paired with every row in the second
relation – rarely useful on its own

Employee Dependent

name edNum ni# eni# dpdName relship
444 Tim Child

Jim Grey 5 444
Jo White 5 555

444 Tim Child
444 Tom Father
555 June Child

Employee x Dependent
name edNum ni# eni#Name relship

* Jim Grey 5 444 444 Tim Child
* Jim Grey 5 444 444 Tom Father

Ji G 5 444 555 J ChildJim Grey 5 444 555 June Child
Jo White 5 555 444 Tim Child
Jo White 5 555 444 Tom Father

349MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

* Jo White 5 555 555 June Child

Defining the Cartesian Product

The Cartesian Product of two relations A and B which have attributes A AThe Cartesian Product of two relations A and B, which have attributes A1 ... Am
and B1 ... Bn, is the relation with m + n attributes containing a row for every
pair of rows, one from A and one from B

Thus if A has a tuples and B has b tuples then the result has a x b tuples

350MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Equi-Join

The rows marked with a star on Slide 349 are the ones we really want

This could be created with the following selection, which essentiallyThis could be created with the following selection, which essentially
makes use of the foreign key

σ ni# = eni# (Employee X Dependent)

Cartesian product followed by this kind of selection is called a JOIN
because it joins together two relations

There are a wide variety of join operators, as we shall see

This one is called an equi-join
– It has the weakness that it keeps both of the columns which are now

identical

351MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Natural or Inner Join Key Slide

In its simplest form, the join of relations A and B pairs off the tuples of A
and B so that named attributes from the relations have the same value

Now we have two columns holding the same value, so we eliminate the
duplicated column to form the natural or inner joinp j

Employee ni# = eni# Dependent

name edNum ni# dpdName relship
* Jim Grey 5 444 Tim Child
* Jim Grey 5 444 Tom Father
* Jo White 5 555 June Child

When we use the term “join” without further comment, this is what is meant!

352MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

j

ni# Name edNum etc dNum dName mgrni# etc
Employee Department

222 Joe Brown 4 ….
333 Kay Lee 4 ….

g
4 R & D 222 ….
5 Admin 555 ….

555 Tom Low 5 ….. 6 Finance …..

These relations can be joined in two ways
– Here they are joined on department number, so that we have the department

details for an employee
– Unmatched tuples disappear (no employees in Finance)
EmpAndDept ←Employee edNum = dNum Department

ni# Name edNum etc dName mgrni# etc
222 Joe Brown 4 R & D 222222 Joe Brown 4 …. R & D 222 ….
333 Kay Lee 4 …. R & D 222 ….
555 Tom Low 5 Admin 555

353MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

555 Tom Low 5 ….. Admin 555 …..

They can also be joined by matching the employee national insurance
number with the manager national insurance number, to give the
department details together with the employee who manages itdepartment details together with the employee who manages it

Unmatched tuples disappear (no manager for Finance, and Kay Lee is not
)a manager)

MgrAndDept ← Employee ni# = mgrni# Department

i# N dN t dN dN tni# Name edNum etc dNum dName etc
222 Joe Brown 4 …. 4 R & D ….
555 Tom Low 5 5 Admin555 Tom Low 5 …. 5 Admin ….

354MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Theta Join θ

The most general form of join is called a theta-join. This allows the
connection of tuples by other comparison components

The operator, θ, can be any comparison operator
– e.g. < > >= <=
– if it is = this is an equi-join– if it is = this is an equi-join

Employee X ni# θ mgrni# Department

This includes all of the unmatched data so as to preserve all the data
Outer Join

Employee outerJoin ni# = mgrni# Department

i# N dN t dN dN tni# Name edNum etc dNum dName etc
222 Joe Brown 4 …. 4 R & D ….
555 Tom Low 5 …. 5 Admin ….

355MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

333 Kay Lee 4 ….. null null null
null null null null 6 Finance …..

Right and Left Outer Joins

Left and right outer joins include unmatched data from only one of the
two relations

T t li t f ll d t t d th i l d t i l d th– To get a list of all departments and their employees, and to include the
departments without employees – a right outer join

Employee rightOuterJoin # # Department

ni# Name edNum etc dNum dName etc

Employee rightOuterJoin ni# = mgrni# Department

ni# Name edNum etc dNum dName etc
222 Joe Brown 4 …. 4 R & D ….
555 Tom Low 5 5 Admin555 Tom Low 5 …. 5 Admin ….
null null null null 6 Finance …..

356MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Semi Join
A i j i i i hi h l h l f f h bl iA semi-join is one in which only the columns of one of the two tables is

returned :
– E.g. to get the details of the managers, a left semi-join version of the join on the

manager number would give:
– Because the only employees in the result are those which join with departments

on the manager foreign key, all non-managers are eliminatedg g y g

ni# Name edNum etc
222 Joe Brown 4 ….
555 Tom Low 5 ….

357MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

pNum
JSPNos

Division ÷

“Which employees work on all projects that John Smith
works on”
– These are the most difficult kinds of query to describe

3
4ProjEmps

– These are the most difficult kinds of query to describe
in relational algebra (and in SQL)

Start by finding all the numbers of the projects that
J h S ith k (b th 3 & 4)

wni# wpNum
123 1
145 3John Smith works on (maybe these are 3 & 4)

EMPWO ← Emp ni#=wni# WorksOn

JSPNos ← σeName=“JS” (EMPWO)

145 3
145 4
269 1JSPNos ← σeName= JS (EMPWO)

JSPNos ←∏ pNum (JSproj)

Then make a list of who works on which project

169 3
172 2
172 3

ProjEmps ← ∏ wni#, wpNum (WorksOn)

“Dividing” the JSPNos into ProjEmps gives us the
employee numbers of anyone who works on all the

172 3
172 4

Resultemployee numbers of anyone who works on all the
entries in the JSPNos relation:

Result ← ProjEmps ÷ JSPNos

wni#
145

Result

358MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Result ← ProjEmps JSPNos
172

Some Examples

Note the words in the question which alert us to a division query are all
and every

1. Give me the name and salaries of all employees who work for the R
& D department List the project name, controlling department, and
the department manager’s name for every project in Stafford

ResDept ← σ Dname=“R&D”(DEPARTMENT)
ResDeptEmps ← Emp ResDept

Common Pattern:
select – join - project

ResDeptEmps ← Emp dNum=dept ResDept
Result ← ∏ name, salary (ResDeptEmps)

2 Li h j lli d d h d2. List the project name, controlling department, and the department
manager’s name for every project in Stafford

StaffordProjects ← σ L i “S ff d”(PROJECT)StaffordProjects ← σ Location=“Stafford”(PROJECT)
StaffProjDepts ← StaffordProjects conDept = dNum Department
StaffProjMgrs ← StaffProjDepts mgrni# = ni# Employee
R l ∏ (S ffP jM)

359MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

Result ← ∏ Pname,Dname, name (StaffProjMgrs)

3. List the names of employees who work on all the projects controlled
by department 5.

D5projects ← σ conDept=5(Project)
D5projNums ← ∏ pNum (D5Projects) // just the numbers
EmpProj ← ∏ emp project (WorksOn) // get rid of hoursEmpProj ← ∏ emp, project (WorksOn) // get rid of hours

EmpNIs ← EmpProj ÷ D5ProjNums // get emp numbers
EmpsWanted ← EmpNIs emp=ni# Employeeemp ni#
Result ← ∏ name (EmpsWanted)

G l S Id if hi h bl d U ll bGeneral Strategy: Identify which tables you need. Usually start by
reducing number of rows. Join. Then reduce number of columns to
what you are asked for.

360MSc/Dip IT – ISD L14 Relational Algebra – (337-360) 3/11/2009

